MATH 3060 Tutorial 10

Chan Ki Fung

November 16, 2022

- 1. A family of equicontinuous functions on a compact metric space (e.g [0, 1]) is pointwise bounded if and only if it is uniformly bounded.
- 2. Let (g_n) be a family of function on \mathbb{R} with $\int_0^1 |g|^p < M$ for some positive number M. Define

$$f_n(x) = \int_0^x g_n(t) dt.$$

Show that $\{f_n\}$ is uniformly equicontinuous.

- 3. Let $\{f_n\}$ be a family of smooth functions on [-1, 1] so that
 - (a) $f_n^{(i)}(0) = 0$ for each *n* and i = 0, 1, 2, 3.
 - (b) $\{f_n^{(3)}\}$ is uniformly bounded.

Show that $\{f_n\}$ is precompact.

- 4. Let $\{f_n : \mathbb{C} \to \mathbb{C}\}\$ be a sequence of functions, and let U be a bounded open subset of \mathbb{C} .
 - (a) Assume U is a disc and suppose $\{f_n\}$ and $\{f'_n\}$ are uniformly bounded on U, show that $\{f_n\}$ is precompact.
 - (b) Suppose $\{f_n\}$ is uniformly bounded on U and each f_n is holomorphic, show that there exists a subsequence f_{n_k} with converges pointwise to a continuous function, show that the convergence is uniform on every compact subset of U.
- 5. (Next time) Generalize the Arzela-Ascoli Theorem to the case when
 - (a) the codomain is a metric space.
 - (b) both the domain and codomain are metric spaces.